F321: Atoms, Bonds and Groups Moles and Equations

108 Marks

	The student	finds that 25.00 cm 3 of 0.0880 mol dm $^{-3}$ aqueous sodium hydrox utralised by 17.60 cm 3 of dilute sulfuric acid, $\rm H_2SO_4$.	ide,
		$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$	
	(i) Calcul	ate the amount, in moles, of NaOH used.	
		answer = mol	
	(ii) Deterr	nine the amount, in moles, of H ₂ SO ₄ used.	
		answer = mol	
	(iii) Calcul	ate the concentration, in mol dm^{-3} , of the sulfuric acid.	
		answer = mol dm ⁻³	
(b)	crystallise. V	g out the titration in (a), the student left the resulting solution to White crystals were formed, with a formula of Na_2SO_4 • x H_2O and a of 322.1 g mol^{-1} .	а
	(i) What	erm is given to the '• x H ₂ O' part of the formula?	

	answer =[Total 6 ma	[2 _] arks
	element strontium forms a nitrate, $Sr(NO_3)_2$, which decomposes on heating as wn below.	
	$2Sr(NO_3)_2(s) \rightarrow 2SrO(s) + 4NO_2(g) + O_2(g)$	
(i)	Using oxidation numbers, explain why the reaction involves both oxidation and reduction.	
		[3]
(ii)	A student heats 5.29 g of $Sr(NO_3)_2$ and collects the gas at room temperature and pressure, RTP.	L*.
	$2Sr(NO_3)_2(s) \rightarrow 2SrO(s) + 4NO_2(g) + O_2(g)$	
	Calculate the volume of gas, in dm ³ , obtained by the student at RTP.	
	Molar mass of $Sr(NO_3)_2 = 211.6 \text{ g mol}^{-1}$.	
	answer = dm ³	
	[Total 6 ma	[3] arks

Using the molar mass of the crystals, calculate the value of \boldsymbol{x} .

(ii)

2.

3.	In the	e sixteenth century, a large deposit of graphite was discovered in the Lake District.	
	Peop	ole at the time thought that the graphite was a form of lead.	
	Nowa	adays, graphite is used in pencils but it is still referred to as 'pencil lead'.	
		ident decided to investigate the number of carbon atoms in a 'pencil lead'. He d that the mass of the 'pencil lead' was 0.321 g.	
	(i)	Calculate the amount, in mol, of carbon atoms in the student's pencil lead.	
		Assume that the 'pencil lead' is pure graphite.	
		answer = mol	F41
	(ii)	Using the Avogadro constant, N_A , calculate the number of carbon atoms in the	[1]
		student's 'pencil lead'.	
		number of carbon atoms =	
			[1]
		[Total 2 ma	ırks]
4.		Group 2 element barium, Ba, is silvery white when pure but blackens when	
	·	sed to air.	
		blackening is due to the formation of both barium oxide and barium nitride. The e ion is N ³⁻ .	
	(a)	Predict the formula of:	
		barium oxide barium nitride	[2]
	(b)	A 0.11 g sample of pure barium was added to 100 cm ³ of water.	
		$Ba(s) + 2H_2O(I) \to Ba(OH)_2(aq) + H_2(g)$	
		(i) Show that 8.0×10^{-4} mol of Ba were added to the water.	

	(ii)	Calculate the volume of hydrogen, in cm ³ , produced at room temperature and pressure.	
		volume = cm ³	[1]
	(iii)	Calculate the concentration, in mol dm^{-3} , of the $Ba(OH)_2(aq)$ solution formed.	
		concentration = mol dm ⁻³	[1]
	(iv)	State the approximate pH of the Ba(OH) ₂ (aq) solution.	
			[1]
(c)		dent repeated the experiment in (b) using a 0.11 g sample of barium that blackened following exposure to the air.	
		est why the volume of hydrogen produced would be slightly less than the ne collected using pure barium.	
			[1]

•••••		
	[То	ital 12 m
	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation	
ilcium ca		
low.	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation	
ow. 60 × 10 Calc	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation $CaCO_3(s) + 2HCl \ (aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$	
ow. 60 × 10 Calc	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation $CaCO_3(s) + 2HCl \text{ (aq)} \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ $^3 \text{ mol } CaCO_3 \text{ reacts with } 0.200 \text{ mol } dm^{-3} \text{ HC}l.$ ulate the volume, in cm ³ , of 0.200 mol dm ⁻³ HCl required to react	
ow. 60 × 10 Calc	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation $CaCO_3(s) + 2HCl \text{ (aq)} \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ $^3 \text{ mol } CaCO_3 \text{ reacts with } 0.200 \text{ mol } dm^{-3} \text{ HC}l.$ ulate the volume, in cm ³ , of 0.200 mol dm ⁻³ HCl required to react	
ow. 0 × 10 Calc	arbonate, $CaCO_3$, reacts with hydrochloric acid as shown in the equation $CaCO_3(s) + 2HCl \text{ (aq)} \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ $^3 \text{ mol } CaCO_3 \text{ reacts with } 0.200 \text{ mol } dm^{-3} \text{ HC}l.$ ulate the volume, in cm ³ , of 0.200 mol dm ⁻³ HCl required to react	

5.

(ii) Calculate the volume, in cm ³ , of CO ₂ formed at ro	om temperature and pressure.
answer =	cm ³
	[1] [Total 3 marks]
Calcium and its compounds, have properties typical of 0	
Calcium carbonate, CaCO ₃ , reacts with acids such as n	itric acid.
A student neutralised 2.68 g of CaCO ₃ with 2.50 mol dn	า ^{–3} nitric acid, HNO ₃ .
The equation for this reaction is shown below.	
$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq)$	+ CO2(g) + H2O(I)
(i) Determine the amount, in mol, of CaCO ₃ reacted.	
amount =	mol [2]
(ii) Calculate the volume, in cm ³ , of CO ₂ produced at pressure.	
volume =	cm ₃ [1]

6.

(iii)	Calculate the volume of 2.50 mol dm ⁻³ HNO ₃ needed to neutralise 2.68 g c CaCO ₃ .	f
	volume =cm	
		[2] [Total 5 marks]
pote The	pidium forms an ionic compound with silver and iodine. This compound has a ential use in miniaturised batteries because of its high electrical conductivity. The empirical formula of this ionic compound can be calculated from its percental position by mass: Rb, 7.42%; Ag, 37.48%; I, 55.10%.	ge
(i)	Define the term empirical formula.	
(ii)	Calculate the empirical formula of the compound.	
		[2] [Total 3 marks]

7.

		$4HCl(aq) + MnO2(s) \rightarrow Cl2(g) + MnCl2(aq) + 2H2O(l)$
(a)		udent reacted $50.0~{\rm cm}^3$ of $12.0~{\rm mol~dm}^{-3}$ hydrochloric acid with an excess of ganese(IV) oxide.
	(i)	Calculate how many moles of HCl were reacted.
		answer = mol
	(ii)	Calculate the volume of $Cl_2(g)$ produced, in dm ³ . Under the experimental conditions, one mole of $Cl_2(g)$ occupies 24.0 dm ³ .
		answer = dm ³
(b)	In th	is reaction, chlorine is oxidised.
(-)		oxidation numbers to determine what is reduced.

[2]

[Total 5 marks]

9. This question looks at the reaction of sodium with water and with oxygen.

A chemist reacted 0.0500 mol of sodium with water to form $50.0~{\rm cm}^3$ of aqueous sodium hydroxide.

$$2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$$

	(i)	What mass of Na was reacted?	
		mass = g	[1]
	(ii)	Calculate the volume of H_2 , in dm^3 , that would be produced at room temperature and pressure, r.t.p.	
		1 mol of gas molecules occupies 24.0 dm ³ at r.t.p.	
		volume = dm ³	[2]
	(iii)	Calculate the concentration, in mol dm ⁻³ , of NaOH that was formed.	
		concentration = mol dm ⁻³	
		[Total 4 m	[1] arks]
10.	Sodi	ium reacts with excess oxygen to form sodium peroxide, Na ₂ O ₂ .	
	_	$\rm O_2$ is used in laundry bleaches. When added to water a reaction takes place hing an alkaline solution and hydrogen peroxide, $\rm H_2O_2$.	
	(i)	Construct a balanced equation for the formation of sodium peroxide from sodium.	
			[1]
	(ii)	Construct a balanced equation for the reaction of sodium peroxide with water.	
	(11)	Construct a balanced equation for the reaction of sodium peroxide with water.	
			[1]
	(iii)	Draw a 'dot-and-cross' diagram for a molecule of H ₂ O ₂ . Show outer electrons only.	
		[Total 4 m	[2] arks]

11.	Bari	um metal can be extracted from barium oxide, BaO, by reduction with aluminium.	
		6BaO + 2A l → 3Ba + Ba ₃ A l ₂ O ₆	
		culate the mass of barium metal that could be produced from reduction of 500 g of um oxide using this method.	
		answer = g [Total 4 mar	ks]
12.		er, ammonia and sulphur dioxide react together to form a compound A which has following percentage composition by mass:	
		N, 24.12%;	
		H, 6.94%;	
		S, 27.61%;	
		O, 41.33%.	
	(i)	Calculate the empirical formula of compound A .	[2]
	(ii)	Suggest a balanced equation for the formation of compound A from the reaction of water, ammonia and sulphur dioxide.	
			[1]

- **13.** A student carried out two experiments using chlorine gas, $Cl_2(g)$.
 - (a) In the first experiment, the student bubbled chlorine through 120 cm³ of an aqueous solution of 0.275 mol dm⁻³ sodium hydroxide, NaOH(aq).

[Total 3 marks]

The equation for this reaction is shown below.

$$C\mathit{l}_{2}(g) + 2NaOH(aq) \rightarrow NaC\mathit{l}(aq) + NaC\mathit{l}O(aq) + H_{2}O(I)$$

Under the reaction conditions, 1 mole of $Cl_2(g)$ occupies 24.0 dm³.

(i)	What is meant by the term the mole?	
		[1]
(ii)	How many moles of NaOH were in the 120 cm ³ volume of NaOH(aq)?	
	answer mol	
		[1]
(iii)	Calculate the volume of $\mathrm{C}\mathit{l}_2(g)$ that was needed to react with the NaOH(aq) used.	
	answer	
		[2]
(iv)	What is a common use for the solution that the student prepared?	
		[1]
cond	centrated sodium hydroxide. A different reaction took place in which sodium	
Sugg	gest the formula of sodium chlorate (V).	
		[1]
	[Total 6	marks]
	$Sb_2S_3 + 3Fe \rightarrow 2Sb + 3FeS$	
How	many moles of Sh ₂ S ₂ are in 500 kg of a typical sample of stibnite containing	
mola	ar mass of $Sb_2S_3 = 340 \text{ g mol}^{-1}$; relative atomic mass of $Sb = 122$	
	mol	
		[2]
	(ii) (iii) (iv) In the conception control of the control of the conception control of the conception control of the control of the conception control of the conception control of the	 (ii) How many moles of NaOH were in the 120 cm³ volume of NaOH(aq)? answer

14.

	stibnite.		
[2]	mass = kg		
otal 4 marks]	[To		
	Calcium oxide neutralises acids such as nitric acid. A student neutralised 1.50 g of CaO with 2.50 mol $\rm dm^{-3}$ nitric acid, HNO ₃ . The equation for this reaction is shown below.	CaC	15
	$CaO(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + H_2O(I)$		
	(i) How many moles of CaO were reacted?	(i)	
ro.	mol		
[2]			
	(ii) Calculate the volume of 2.50 mol ${\rm dm}^{-3}$ HNO $_{\rm 3}$ needed to exactly neutralise 1.50 g of CaO.	(ii)	
	volume = cm ³		
[2] otal 4 marks]	[To		
S.	The nitrate ion, NO ₃ ⁻ , in Ca(NO ₃) ₂ contains both covalent and dative covalent bonds	16. The	16
	(i) What is the difference between a covalent bond and a dative covalent bond?	(i)	
[1]			
[.]			
	(ii) Calcium nitrate decomposes on heating to form calcium oxide, oxygen and nitrogen(IV) oxide, NO ₂ .	(ii)	
	Construct a balanced equation for this reaction.		
[41			
[1] otal 2 marks]	[Tc		

Calculate the mass of antimony that could be obtained by processing 500 kg of

(ii)

		his test on a solution of magnesium chloride. The bottle of magnesium chloride the student used showed the formula $MgCl_2.6H_2O$.	
		student dissolved a small amount of $MgCl_2.6H_2O$ in water and added aqueous r nitrate to the aqueous solution.	
	(i)	What is the molar mass of MgCl ₂ .6H ₂ O?	
		molar mass = g mol ⁻¹	[1]
	(ii)	What would the student see after adding the aqueous silver nitrate, AgNO ₃ (aq)?	
	(iii)	Write an ionic equation for this reaction. Include state symbols.	[1]
	(iv)	Using aqueous silver nitrate, it is sometimes difficult to distinguish between chloride, bromide and iodide ions.	[2]
		How can aqueous ammonia be used to distinguish between these three ions?	
		[Total 7 n	[3] narks]
18.	In 20 hour.	100 00, the mass of CO_2 emitted in the UK was equivalent to 1 kg per person in every	
	(i)	Calculate the volume of 1 kg of carbon dioxide. Assume that 1 mole of ${\rm CO_2}$ occupies 24 ${\rm dm^3}$.	
		volume = dm ³	[2]

17. Aqueous silver nitrate can be used as a test for halide ions. A student decided to carry

	(ii)	The UK has set a target to cut CO_2 emissions by 60% of the 2000 value by 2050. Calculate the reduction needed in the volume of CO_2 emissions each hour per person if the target is to be met.	
		answer: dm ³	
]	1]
		[Total 3 mark	s]
19.	calc	prepare the aqueous calcium chloride, the student added the exact amount of fium so that all the hydrochloric acid had reacted. She used 50 cm 3 of mol dm $^{-3}$ HC/.	
	(i)	How many moles of HC/ had she used?	
		[1]
	(ii)	Calculate the mass of calcium that she used.	
	(,		2]
	(iii)	The student added some more calcium and she was surprised that a reaction still took place.	
		Explain this observation.	
		Write a balanced equation for this reaction.	
			^1
		ا Total 6 mark]	3] s1
20.	A st	udent reacted 1.44 g of titanium with chlorine to form 5.70 g of a chloride X .	
	(i)	How many moles of Ti atoms were reacted?	
		ן	1]
	(ii)	How many moles of Cl atoms were reacted?	
			2]
	(iii)	Determine the empirical formula of X .	
		ו	1]
	(iv)	Construct a balanced equation for the reaction between titanium and chlorine.	
			1]
		[Total 5 mark	s]

21.	stoma	ach ac	nad a stomach-ache and needed to take something to neutralise excess cid. He decided to take some Milk of Magnesia, which is an aqueous of magnesium hydroxide, Mg(OH) ₂ .	
	(a)		main acid in the stomach is hydrochloric acid, $HCl(aq)$, and the unbalanced tion for the reaction that takes place with Milk of Magnesia is shown below.	
		М	$g(OH)_2(s) +HCl(aq) \rightarrowMgCl_2(aq) +H_2O(I)$	
			nce the equation by adding numbers where necessary in the unbalanced tion above.	
				[1]
	(b)	conce	student's stomach contained 500 cm^3 of stomach fluid with an acid entration of $0.108 \text{ mol dm}^{-3}$. The student swallowed some Milk of Magnesia lining $2.42 \text{ g Mg}(OH)_2$. He wondered whether this dose was sufficient to alise the stomach acid.	
		Assur	me that all the acid in the stomach fluid was 0.108 mol dm ⁻³ hydrochloric	
		(i)	How many moles of HCl were in the 500 cm ³ of stomach fluid?	[1]
		(ii)	Calculate the mass of $\mathrm{Mg}(\mathrm{OH})_2$ necessary to neutralise this stomach fluid.	[3]
		(iii)	Determine whether the student swallowed too much, too little, or just the right amount of Milk of Magnesia to neutralise the stomach acid.	
			[Total 6 mail	[1] rks]
22.			rms three compounds with phosphorus. The compounds have the molecular Br_3 , PBr_5 and $\mathrm{P}_2\mathrm{Br}_4$.	
	(i)	Expla	nin what is meant by the term molecular formula.	
				[1]
	(ii)	PBr ₃	can be prepared by heating bromine with phosphorus, P ₄ .	
		Write	a balanced equation for this reaction.	

			[1]
	(iii)	Compound A is one of the three bromides of phosphorus above. It has the following percentage composition by mass: P, 16.2%; Br, 83.8%.	
		Use this percentage composition to calculate the empirical formula and to determine the identity of compound A .	
		empirical formula	
		identity of compound A	
		[Tota	[3] al 5 marks]
23.		tel makes up 25% of the total mass of a fifty pence coin. A fifty pence coin has as of 8.0 g.	
	(i)	Calculate how many moles of nickel atoms are in a fifty pence coin.	
		answermol	[2]
	(ii)	Calculate the number of atoms of nickel in a fifty pence coin.	
		$L = 6.02 \times 10^{23} \text{ mol}^{-1}$	
		answer atoms	[1]
		[Tota	al 3 marks]